
AD-ANG 082 S5 NODUI45LMSAFRDEETOIS AS/ /

DESIGN AND VERIFICATION OF RELIABLE SOFTWARE. CU)

FEB 80 S S OWICKI F49620-77-C 045

UNCLASSIFILED, AFOSRTR-80-0232 NL

7 DA8 E EEAFR UI AI SONOELETRNIShASS/I1

1111 1. LI
II3I2 tj. U36

II5 141 6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

~OST380.0232

COMPUTER SYSTEMS LABORATORY

STANFORD ELECTRONICS LABORATORIES

DEPARTMENT OF ELECTRICAL ENGINEERING

T STANFORD UN I V ERS I TY

Stanford, California 94305

1 1

. DESIGN AND VERIFICATION OF RELIABLE SOFTWARE

FINAL REPORT

Covering the Period 1 January 1977 - 31 December 1979

AFOSR Contract no. F49620-77-C-0045 /

SEL Project N-771

Prepared for the

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH D T !C
Bolling Air Force Base o _ E

Washington, D. C. 20332 , 2. 0 0

Principal Investigator: A

Professor Susan S. Owicki

CL
February 1980

80 3 20 077 distributionULU%*

- -,.-.

UNCLASSII 11'-D

SeCURITY CLASSIFICATION OF THIS PAGE (When Dlate Entered)___________________

REIGRA~EPIIAT OFA INSTRACTIONS
fQT OUMNATO PG NEOR COPETIORM~£.

Stafor Unierit ACESONN.5.RPIEGSRAM ALNTO ET HUM89

Computer System Laoatr
S. TIL and, C% 930l6102e2

I GN O NTROLL IFIE AME AND ADDRESS BE OTWR

7.A!T!aRO GRLASIIATNOWA

IS DISTRITORNATIEN NAME t ANe R ADR ESt0)RGA LMETRJCTS

* A pro efo pu b i re ea e di tRbuAo unlimited.UMB

17. DISTrISUivsTEiTfthy asrc nee nBok20 fdfeetfo eot

pogmperifiation, Laorating sytmd6gprallpormig

* d~tabase, netor protcols

Acionsbeen systcem Scomntiesecifctonadproetoshaebe

Blgra TFey Wallowindepdn t veifcaio of33 each mou, an.roiea.ai

catio M O fRN sGErvCe uarantee Is ade prossibtrlel uing tfie S EmoRIYCAS log ti, aeport)

DD ,~~P 143 LI~l/OF NO ISIS 35 ETEUNCLASSIFIED

SECURITY S& CLSF CAI F1 CAN/S OWN (,eu I bea£leet

SCHEDULE..

UNCLASSIFIED

fWjI /i' CLASSIFICATION OF THIS PAGiE(Whom Data Entered)

20. Abstract ccnt.

log Cal system in which one can reason about the future states of a program
computation

The second approach is the investigation of specific problems in three appli-

cation areas: operating systems, network communications protocols, and distri-

buted databases. In addition to providing test cases for evaluating the basic

tools, these applications are important in their own right. It has been possib e

to identify common patterns, and to build more sophisticated techniques for
handling them from the basic tools discussed above. A major issue in certain

applications is dealing with reliable components, and methods of reasoning aboul
such components are presented.

vuj.

- - .. .A -z ".

r -.

T A BLE O F CO0N TE NT S

11. Research Objectives 1

2. Description'of Research and Results 1

3. Publications 7

4. Professional Personnel 8j5. Interactions 9

This t-

Distr4:,

?eitro7-ziatiofl Officer

1. RESEARCH OBJEOTI1M

Program verification has frequently been uugggested as a tool for improving software
reliability. The purpose of this research has been to develop verification techniques that
can be applied to complex program systems involving concurrency, such as operating
systems and network communications manager.

Two complementary approaches have been pursued. The first is the development
of basic tools for describing and verifying concurrent programs; the aim is to find ways
of reducing the complexity that arises from concurrent interactions between the cam-
ponents of the system. These tools are general purpose and should be applicable to a wide
range of problems. The second approach is the investigation of specific applications by
analyzing algorithms and programs from such domains as operating sytems, networks,
and distributed databases. These program examples provide test cases for evaluating
the power of the basic tools and help to identify problem areas where further basic work
is needed. In addition, analysis of these programs often makes it possible to recognize
common patterns and formulate rules that simplify the design and verification of program
components that fit these patterns.

2. DESCRiPTION OF RESEARCH AND RESULTS

2.1 Basic Tools

Our purpose here has been to devise general-purpose specification and proof methods
for concurrent programs. Two types of correctness criteria can be distinguished: invariant
properties, which should be true throughout system execution, and liveness constraints,
which require that certain events must eventually occur. For example, an airline reser-
vation system might preserve the invariant that no flight is overbooked and provide
a liveness guarantee that each request for a reservation is eventually answered. Our
techniques for dealing with the two kinds of problems are discussed below. In both
cases, we are concerned with managing the complexity of the verification process, and so
favor modular methods that allow factoring the verification of a system, with relatively
independent treatment of each component.

First, let us consider the proof of invariant properties. Concurrent programs can be
constructed using three kinds of modules: processes (the active compoents), monitors
(which implement shared data objects and operations), and compound modules con-
structed from other modules We have developed a specification format in which eadi
module is described by assertions giving its initial state, its requirements from other
modules, invariant relations between its local variables, and effects of its procedures
(if it has any). Verification rules for proving that a module implementation meets its
specifications take several forms. For process and monitor modules, verification requires
direct analysis of the program code. Because of the specification style, this step is in
general no more complex than for a non-concurrent program. For compound modules,

* - - -,7--

"- IlI.Ill-t]It'I ' / * I -

verification depends only on the specifications of the caunponemts, and not an their imn-
plementaions. Since each module verificatiom is performed indqpeuaduatly, and the eote
of interactdons between component. is limited to a small, well-defined iutefac, the
complexity of the system proof does not grow unmanageably a5 the size of the system
increases.

The beati rules for proving invariant properties of modular systems are presented
in [I). In 121, the rules are amplified and illustrated by the design and verification of a
simple system for routing mail in a ring network.

.LI Vems

The methods of specifying and verifying invariant properties described above are
adequate for a wide range of Concurrent programs. Our work On liVMWes proPWU~eg
is at an earlier stage, but the initial results are promising. Our approach is based on
temporal logic, in which one can express assertions about future program states. This is

accoplihedby introducing two symbols: * (pronounced eventually) and C3 (pronounced
henceforth). The liveness, requirements of the airline reservations system described above
can be expressed in temporal logic by.

13 (if (reques R ecived) ten O(requewt R wmemured)).

In earlier work, the statement and verification of liveness properties was done informally.
As a result, correctness proofs were very susceptible to ambiguities in the problem state-
ment and to errors of reasoning. The main counibution of temporal logic is that it
provides a precise means of stating and proving liveneus requirements.

To facilitate modular proofs of liveness, the specification methods for modules
described in the previous section have been extended to include liveness properties. These
properties are expressed as conditional promises with the form

if P then *Q unles ddayed by D,

where P, Q, and D are assertions about the program state. The meaning of such.a promise
is that if P is true of same state in a computation, then there most be a subsequent state
in which Q is true, except in case where D remains true forever.

As an example, consider a pipeline of processes communicating through buffers.
Process A4, which moves data from buffer Be-.i to buffer A~, might have the liveness
specification:

uf (zi in mA-1) then * (z is not inBA and fi(z) is in A4) unles ddaed by j BdAU.

Informally, this states that process P4 promises to move items from its input buffer to
its output buffer unless its output buffer stays full.

Verifying that a module implemented by a process or monitor meet its livees.
promises depends on axioms that characterize the liveness properties of programming

2

language statements. (The properties of synchronizing statements, like semaphore P and
V operations and monitor waits, are especially important). For compound modules, the
liveness of the whole module can be verified using just the specifications of its components
For example, in the pipeline program, the entire system of processes and buffers satisfes

hthe uncnditional promise

The proof of this unconditional system promise involves showing that P's promise to
remove items from a-1 cancels out P-s delay condition. Proof rules for verifying
promises of this sort have been developed for certain applications, notably the protocol
verification problems discussed in Section 3.2.

2.2 Applications
We have investigated the design and verification of concurrent systems in three ap-

plications areas: operating systems, network communications protocols, and distributed
databases. The work in each area is described below.

Operating SYstems

* We have considered the design of an operating system nucleus, identification of com-
mon patterns for operating system modules, and schemes for the detection and prevention
of deadlock.

* Two alternatives for organizing the nucleus were compared and evaluated. In the
first, message passing, the program consists of a set of independent processes. The
processes have no common memory or variables, but can communicate by sending and
receiving messages. In the second method, processes may share memory, but each set
of shared variables is encapsulated in a module. The module also contains procedures;
a process can only access module data by calling module procedures. Modules provide
protection from time-dependent errors, since only one process at a time may be active
in a module.

In order to compare these alternatives, we prepared a detailed design of the nucleus
memory manager using each method and compared their ease of verification. Our con-
clusion was that it was easier to create and verify the module-based design. This is
primarily because of the convenience of shared data, and because the procedure call used
with modules imposes more structure on the relationships between system components.
For this reason, we chose to organize our design according to the data-module model..

*The use of data-modules as a basic structuring tool simplifies verification of most
of the nucleus. However, the kernel, which provides the implementation of modules, is
more complicated than a kernel for implementing message passing. To compare them, we
developed high-level designs for both types of kernel. While the module-based kernel was
indeed more complicated, the difference was not great enough to outweigh the advantages
of using modules in the rest of the nucleus.

3

An important result of our study of the nucleus was the identification of two patterns
that account for most of the modules of an operating system. One is the transmitter, which
produces a stream of output values from a stream of input valueL Verifying properties of
transmitter modules is based on history sequences that record the sequences of input and
output values. An example of verification of a system composed of transmitter modules is
given in [2]. The other common pattern is the dynamic resource allocator, which manages
the sharing of some object(s) between competing modules. A typical example of such an
allocator is a memory manager that maps program pages to memory pageframes. The
modular proof techniques we favor gain much of their power from the fact that shared
data is statically allocted to one module, so dynamic allocation is a complicating factor.
However, it is possible to specify a method of dynamic allocation, based on capabilities,
that fits the modular verification style. In [3], we precisely specify this method, and
show how to verify that an allocator implementation meets its requirements. Once the
allocator itself has been verified, the correctness proof of the rest of the system is no
more difficult than if allocation were strictly static.

Deadlock avoidance is a particular problem for resource allocatcr, and we have
investigated it in some detail. A variety of deadlock-avoidance strategies have been
proposed in the literature. They have in common the property that deadlock is prevented
by refusing to allocate a resource if doing so leads to an "unsafe" state: one in which
further resource requests might result in deadlock. The strategies differ in the amount
of computation they perform in evaluating a request and in the amount of information
they require about future resource requests from the competing modules. In general, a
strategy that performs more computation or uses more information about resource needs
can recognize a larger number of requests as "safe," and so impose less delay on the
competing modules. We have developed a model that allows a precise characterization
and comparison of these differences; analysis of the model has suggested extensions that
improve the performance of the previous algorithms. This work is reported in [5J.

Network Oommunieation Protoeols

n network communications protocols, most of the modules are instances of the same
transmitter pattern that occurs so often in operating systems. The principle difference is
that communication protocols must function correctly even in the presence of processor
failures and transmission line errors. We can incorporate these failure possibilities into
the verification in a straightforward manner. For example, the invariant of a perfect
communication link is that the ouput it has delivered is an initial segment of the input it
has received. A communication link that may lose or re-order messages is characterized
by an invariant that states that its output is a permutation of a subsequence of its input.
The liven.s promise of a failure-free link is that each input value will eventually be
output, while the promise of a link that can lose a message a bounded number of times is
that any message that appears a sufficient number of times in the input will eventually
be output.

We have found that the modular techniques already discussed are adequate for
proving invariant properties and liveness of several types of data-transmission protocols.

.4

The proof of invariant properties is a straightforward extension of the kind of reasasng
used with tranittes in operating systems. Novel features include the possibility for
loss and re-ordering allowed by the invariant for the transmission medium, and the cycles
in the data path@ that occur because of the need to acknowledge transmissiaom Thene
features cause no theoretical difflculties, but they seem to lead to more complex module
invariant.

In proving fiveness, the principal issue is that actions such as transmitting messages
and acknowledgments must be repeated until they are successful. For example a tran.-
mitter may have the livenen property that it promises to keep sending message n until
it receives acknowledgment n. This can be expressed in temporal logic by

if 0 (acknouwegement n not received) then 03> (message nsent.)

The corresponding receiver may have the liveness promise that it will repeatedly ac-
knowledge message ni until it receives message n + 1.

Distributed Databases

The final application area we have considered is distributed databases. Here the
issue of concern is maintaining the consistency of multiple copies of data while allowing
access from several users to take place concurrently. A new consistency control algo-
rithm has been developed for this purpose [51: it uses a distinguished true copy of each
data item which is the locus of locking for that data item. The true copy may migrate
throughout the system, and may be split into multiple shared copies that can be read but
not modified. This allows concurrent operation, with a lower overhead of messages than
many existing algorithms. The consistency of the true-copy algorithm can be verified
using existing techniques: consistency is another example of an invariant property. The
true-copy algorithm is independent of any particular policy for avoiding deadlocks or
resolving competing resource demands, so it can serve as a basis for a variety of schemes
whose consistency will then be easily verified.

A further application of the true-copy mechanism is its use to provide resilient sys-
tem operation when some of the system components fail. For example, when a processor
managing certain data items fails, a resilient system should be able to continue operation
using other copies of the data items. However, this must be done in such a way that
system consistency is maintained, in spite of the fact that transactions at the failed site
may already have modified the local copies of the data. Several mechanisms for providing
resilient systems are discussed in [6].

2.3 Summary

, Our experience in studying application problems leads to the following assessment
of the state of verification techniques for concurrent programs. The methods of proving
invariant properties are well-understood, and are adequately powerful for a wide range of
systems. Further work in deriving techniques tailored to particularly common patterns,

A.

. .. -

like the transmitter and allocator already discussed, would still be profitable. Proof of
liveness properties is at an earlier stage, but we have been able to deal with a number of
sample problems. Proofs of network protocols, which must cope with unreliability, are
especially encouraging. Further work is needed to identify common livenems patterns,
like the ones described for invariants, and to provide techniques for verifying systems
that follow these patterns.

II

I

lB

/b

3. PUBLCATIONS

[1] Owicki, S. "Specifications and Prods for Abstract Data Types in Concurrent Programs,"
in Bauer and Broy (ed.), Proram Construction, Springer-Verlag, 1979.

[2] Owicki, S. "Specification and Verification of a Network Mail System," in Bauer and
Bray (ed.), Program Construction, Springer-Verlag, 1979.

[3] Owickd, S. "Verifying Parallel Programs with Resource Allocation," Proceedings of
the International Conference on Mathematical Btudies o. Information Processing,

*Springer-Verlag, 1979.

[4] Minoura, T. "A New Concurrency Control Algorithm for Distributed Database
Systems," Proceedings of the Fourth Berkeley Conference on Distributed Data
Management and Computer Networks, August, 1979.

[5 Minoura, T. "Deadlock Avoidance Revisited," accepted by Journal of the ACM

[8] Minoura, T. Resilient Extended True-Copy Token Algorithms for Distributed Database
Systems, Ph. D. thesis, Stanford University, to appear June 1980.

7

4L PROPUSSIONAL PBRSONNUL

Principle Investigator: Susan Owici

Graduate Student Research Assistants:

Keith Marzullo, 9/77 to present

Toshimi inoura, 9/77 - 1/78 and 1/78 - present

Alfred Spector, 1/77 - 6/77

I.

* 5. INTERACTIONS

5.1 Spoken Papers

Owicki, S. Lecturer at NATO International Summer School on Program Constructio ,
Germany, July, 1978.

Owicki, S. "Modelling Parallel Programs Using Temporal Logic," IFIP Working Group
2.2, Kyoto, Japan, August 1978.

Owicki, S. "Verifying Protocols as Parallel Programs," at Protocol Verification Workshop,
March 20-21, 1979. Sponsored by DARPA, organized by Vint Cerf.

Owicki, S. "Safe Garbage Collection in the Presence of Concurrency," IFIP Working
Group 2.3, Santa Cruz, California, August 1979.

5.2 Other Interactions

Susan Owicki is co-principal investigator with John Hennessy on Joint Services
Electronics Program contract DAAG29-79-C-0047 entitled "Reliability in Distributed
Systems."

Susan Owicki was a member of the program committee for the International Symposium
*on the Semantics of Concurrent Computation, Evian, France, July, 1979.

Susan Owicki is on Computer Science and Technology Board of the National
Research Council Assembly of Mathematical and Physical Sciences.

* *1

IX. 9

